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Outline 

•  Motivation 
▫  Water security 
▫  Need to explore wide range of futures in water resources planning 

•  “Revealing” uncertainties in climate impact assessments 
▫  Emission scenarios 
▫  Climate model simulations (model, initial conditions) 
▫  Climate downscaling (statistical, dynamical) 
▫  Hydrologic modeling 

•  Model development activities 
▫  Climate downscaling 
▫  Hydrologic modeling 

•  Summary and outlook 



Declining snowpack: 
Trends in end-of-winter snow accumulation 

Mote et al., BAMS, 2005 



Stewart et al., J. Climate, 2005 

Red - Earlier runoff 
Blue - Later runoff 

Changes in seasonality: 
Trends in runoff timing 



Probability of 
Lake Mead 
“going dry” 

…controversial questions 
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Climate model uncertainty 
The role of internal variability 

Change in air temperature 

Change in precipitation 



Downscaling climate models 

•  High-resolution Regional 
Climate Model 

•  Simulations based on 
atmospheric physics 

•  Computationally expensive 

•  Detailed Physics 
▫  Provides greater confidence in 

climate change scenario 



WRF simulations 
• Water vapor simulation 



• Relies on stationary 
statistical relationships 

• Computationally cheap 

Statistical Downscaling 
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Statistical downscaling: Wet day fraction 

Gutmann et al., WRR 2014 



Impact on Annual water balance 
Statistical downscaling methods and hydrologic models  
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Key Findings 
•  The choice of GCM and ensemble members matters 

•  The choice of meteorological forcings used in defining current 
hydroclimate can have as large an impact on projected hydrologic 
outcomes as the climate change signal. 

•  The choice of statistical versus dynamical downscaling is important, and 
the resolution used in dynamical downscaling matters. 

•  The choice of statistical downscaling technique, if any, matters 

•  The choice of hydrologic model also affects projection outcomes, though 
less so if a hydrology model is well calibrated. 

•  Finally, outcomes depend significantly on subjective decisions made in 
calibrating hydrologic models 

•  the choice of forcing data 
•  the choice of calibration scheme and objective  
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Dichotomous end-members: 
•  Statistical downscaling is computationally efficient (no physics) 
•  Dynamical downscaling has loads of physics (too expensive) 

Identify the key physics and develop a simple model 
GOAL: >90% of the information for <1% of the cost 

Climate downscaling advances 

Topography

WRF Vertical WindsSWM Vertical WindsICAR 
Intermediate Complexity Atmospheric Research model (ICAR) 

Gutmann et al., JHM 



ICAR water vapor simulation 
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ICAR Precipitation Simulation 

WRF and ICAR have very 
similar precipitation 
distributions.  
 
ICAR requires ~1% of the 
computational effort of 
WRF.  
 
This enables a pseudo-
dynamical downscaling for a 
wide variety of GCM / 
scenario combinations 
 

ICAR 



Unifying process-based hydrologic models 

Conceptual basis: 
1. Most modelers share a common understanding of 

how the dominant fluxes of water and energy affect 
the time evolution of model states 

2. Differences among models relate to 
a)  the spatial discretization of the model domain; 
b)  the approaches used to parameterize individual 

fluxes (including model parameter values); and  
c)  the methods used to solve the governing model 

equations. 

General schematic of the terrestrial water cycle, 
showing dominant fluxes of water and energy 

The Structure for Unifying Multiple Modeling Alternatives (SUMMA): 
Defines a single set of conservation equations for land biogeophysics, with the 
capability to use different spatial discretizations, different flux parameterizations and 
model parameters, & different time stepping schemes 

Clark et al. (WRR 2011); Clark et al. (WRR 2015a; 2015b) 



Need to unify hydrologic models 

•  Model proliferation: Every hydrologist has 
their own model, making different decisions at 
different points in the model development 
process 

•  The shantytown syndrome: Ad-hoc 
approach to model development 

•  Model proliferation & the shantytown syndrome 
make it difficult to test underlying hypotheses 
and identify a clear path to model improvement 



The Structure for Unifying Multiple Modeling Alternatives 
(SUMMA) 
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Clark et al. (WRR 2015a) 



Model construction 
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•  Numerical solution 
▫  Traditional approach in land modeling: Operator splitting 
▫  SUMMA: Fully coupled implicit solution 



Model construction 
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•  Modularity 
▫  Modularity at the level of individual fluxes 
▫  Separation of physical processes and the numerical 

solution greatly simplifies adding new modeling options 



Process flexibility 
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Spatial flexibility 



Modeling requirements 

•  Scientific requirements 
§  Process flexibility 
§  Spatial flexibility 
§  Numerical flexibility 

•  User requirements 
§  Can be configured to meet a broad range of requirements 
§  Can be configured to minimize run time, and enable use of 

ensembles and extensive model analysis 
§  Easy to modify 

§  Existing multiple hypothesis frameworks meet these 
requirements to varying degrees 
§  JULES, CLM, Noah-MP, etc. 



A system to study land surface 
processes and land-atmosphere 
interactions 

Land Information System (LIS) 

 

ü NASA’s 2005 software of the year award 

ü An OSSE environment for hydrology mission studies has been developed as 
part of an AIST-2011 project 

  Integrates satellite- and ground-
based observational data products 
with land surface modeling 
techniques 

  Capable of modeling at different 
spatial scales 

http://lis.gsfc.nasa.gov




LIS modes of operation 

LIS-APP

Weather

Landslides

Drought

Floods

Agriculture

Coupled or 
Forecast Mode

WRF

Hydrologic 
Forecasts

Kumar et al. (2006), Env. Modeling and Software,  Peters-Lidard et al (2007), Innovations in Systems and Software Engineering
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Summary and outlook 

•  Uncertainties in climate impacts “revealed” 
▫  Uncertainties have always been there; just understanding them now 
▫  Possible that previous climate impact studies were over-confident 

•  Work ongoing to improve representation of uncertainties 
▫  Climate downscaling 

�  Computationally efficient and physically realistic 
�  Apply to a wide range of scenarios; better depiction of nonstationarity 

▫  Hydrologic modeling 
�  More thoroughly explore hydrologic modeling alternatives 
�  Improve model fidelity; depart from model democracy 

•  Outlook 
▫  Explore the “full” space of likely futures 
▫  Develop “hydrologic storylines” – a representative set of scenarios 

useful for water resources planning 



Explicitly characterize uncertainty through the 
hydrologic prediction chain 

Clark et al., WRR 2015; Clark et al., Current Climate Change Reports 2016 

•  Approach 
▫  Characterize uncertainty: “full” 

coverage of model hypothesis 
space 

▫  Reduce uncertainty: cull bad 
models and methods 



Explicitly characterize uncertainty through the 
hydrologic prediction chain 

Clark et al., WRR 2015; Clark et al., Current Climate Change Reports 2016 

•  Approach 
▫  Characterize uncertainty: “full” 

coverage of model hypothesis 
space 

▫  Reduce uncertainty: cull bad 
models and methods 

•  Move from “ad-hoc” small 
ensemble systems, to ensemble 
systems deliberately designed 
to encapsulate defensible 
modeling approaches 
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